advertise
Sunday
Aug172008

Many updates against MySQL

Hello! My first post here, so be patient please. I am developing site where I have lots of static content. But on many pages I have query to update count of views. I would say this is may cause lots of problems and was interested in another solution like storing these counts somewhere else. As my knowledge is bit limited in this way, I am asking you. I can say I understand PHP(OOP ofc) and MySQL. Nowadays I am getting into servers. Other question I have is: I read about making lots of things static.(in Flickr Architecture) and am interested how they do static sites? Lets say they make photo page static? And rebuild when tagg or comment is added? I am bit interested in it as I want to learn Smarty better(newbie) and serving content. Moreover, how about PHP? I have read many books about PHP theoretically but would love to see some RL example of using objects and exceptions(mainly this as I don't completely understand it) to learn some good programming habits. So if you can help me with some example or resource, please do :) I know I've covered huge area of things but these are what makes me mad everyday. So please be patient :) Greetings.

Click to read more ...

Sunday
Aug172008

Strategy: Drop Memcached, Add More MySQL Servers

Update 2: Michael Galpin in Cache Money and Cache Discussions likes memcached for it's expiry policy, complex graph data, process data, but says MySQL has many advantages: SQL, Uniform Data Access, Write-through, Read-through, Replication, Management, Cold starts, LRU eviction. Update: Dormando asks Should you use memcached? Should you just shard mysql more?. The idea of caching is the most important part of caching as it transports you beyond a simple CRUD worldview. Plan for caching and sharding by properly abstracting data access methods. Brace for change. Be ready to shard, be ready to cache. React and change to what you push out which is actually popular, vs over planning and wasting valuable time. Feedster's François Schiettecatte wonders if Fotolog's 21 memcached servers wouldn't be better used to further shard data by adding more MySQL servers? He mentions Feedster was able to drop memcached once they partitioned their data across more servers. The algorithm: partition until all data resides in memory and then you may not need an additional memcached layer. Parvesh Garg goes a step further and asks why people think they should be using MySQL at all?

Related Articles

  • The Death of Read Replication by Brian Aker. Caching layers have replaced read replication. Cache can't fix a broken database layer. Partition the data that feeds the cache tier: "Keep your front end working through the cache. Keep all of your data generation behind it."
  • Read replication with MySQL by François Schiettecatte. Read replication is dead and it should be used only for backup purposes. Take the memory used for caching and give it to your database servers.
  • Replication++, Replication 2.0, Replication.Next by Ronald Bradford. What should read replication be used for?
  • Replication, caching, and partitioning by Greg Linden. Caching overdone because it adds complexity, latency on a cache miss, and inefficiently uses cluster resources. Hitting disk is the problem. Shard more and get your data in memory.

    Click to read more ...

  • Saturday
    Aug162008

    Strategy: Serve Pre-generated Static Files Instead Of Dynamic Pages

    Pre-generating static files is an oldy but a goody, and as Thomas Brox Røst says, it's probably an underused strategy today. At one time this was the dominate technique for structuring a web site. Then the age of dynamic web sites arrived and we spent all our time worrying how to make the database faster and add more caching to recover the speed we had lost in the transition from static to dynamic. Static files have the advantage of being very fast to serve. Read from disk and display. Simple and fast. Especially when caching proxies are used. The issue is how do you bulk generate the initial files, how do you serve the files, and how do you keep the changed files up to date? This is the process Thomas covers in his excellent article Serving static files with Django and AWS - going fast on a budget", where he explains how he converted 600K thousand previously dynamic pages to static pages for his site Eventseer.net, a service for tracking academic events. Eventseer.net was experiencing performance problems as search engines crawled their 600K dynamic pages. As a solution you could imagine scaling up, adding more servers, adding sharding, etc etc, all somewhat complicated approaches. Their solution was to convert the dynamic pages to static pages in order to keep search engines from killing the site. As an added bonus non logged-in users experienced a much faster site and were more likely to sign up for the service. The article does a good job explaining what they did, so I won't regurgitate it all here, but I will cover the highlights and comment on some additional potential features and alternate implementations... They estimated it would take 7 days on single server to generate the initial 600K pages. Ouch. So what they did was use EC2 for what it's good for, spin up a lot of boxes to process data. Their data is backed up on S3 so the EC2 instances could read the data from S3, generate the static pages, and write them to their deployment area. It took 5 hours, 25 EC2 instances, and a meager $12.50 to perform the initial bulk conversion. Pretty slick. The next trick is figuring out how to regenerate static pages when changes occur. When a new event is added to their system hundreds of pages could be impacted, which would require the effected static pages to be regenerated. Since it's not important to update pages immediately they queued updates for processing later. An excellent technique. A local queue of changes was maintained and replicated to an AWS SQS queue. The local queue is used in case SQS is down. Twice a day EC2 instances are started to regenerate pages. Instances read twork requests from SQS, access data from S3, regenerate the pages, and shutdown when the SQS is empty. In addition they use AWS for all their background processing jobs.

    Comments

    I like their approach a lot. It's a very pragmatic solution and rock solid in operation. For very little money they offloaded the database by moving work to AWS. If they grow to millions of users (knock on wood) nothing much will have to change in their architecture. The same process will still work and it still not cost very much. Far better than trying to add machines locally to handle the load or moving to a more complicated architecture. Using the backups on S3 as a source for the pages rather than hitting the database is inspired. Your data is backed up and the database is protected. Nice. Using batched asynchronous work queues rather than synchronously loading the web servers and the database for each change is a good strategy too. As I was reading I originally thought you could optimize the system so that a page only needed to be generated once. Maybe by analyzing the events or some other magic. Then it hit me that this was old style thinking. Don't be fancy. Just keep regenerating each page as needed. If a page is regenerated a 1000 times versus only once, who cares? There's plenty of cheap CPU available. The local queue of changes still bothers me a little because it adds a complication into the system. The local queue and the AWS SQS queue must be kept synced. I understand that missing a change would be a disaster because the dependent pages would never be regenerated and nobody would ever know. The page would only be regenerated the next time an event happened to impact the page. If pages are regenerated frequently this isn't a serious problem, but for seldom touched pages they may never be regenerated again. Personally I would drop the local queue. SQS goes down infrequently. When it does go down I would record that fact and regenerate all the pages when SQS comes back up. This is a simpler and more robust architecture, assuming SQS is mostly reliable. Another feature I have implemented in similar situations is to setup a rolling page regeneration schedule where a subset of pages are periodically regenerated, even if no event was detected that would cause a page to be regenerated. This protects against any event drops that may cause data be undetectably stale. Over a few days, weeks, or whatever, every page is regenerated. It's a relatively cheap way to make a robust system resilient to failures.

    Click to read more ...

    Thursday
    Aug142008

    Product: Terracotta - Open Source Network-Attached Memory

    Update: Evaluating Terracotta by Piotr Woloszyn. Nice writeup that covers resilience, failover, DB persistence, Distributed caching implementation, OS/Platform restrictions, Ease of implementation, Hardware requirements, Performance, Support package, Code stability, partitioning, Transactional, Replication and consistency. Terracotta is Network Attached Memory (NAM) for Java VMs. It provides up to a terabyte of virtual heap for Java applications that spans hundreds of connected JVMs. NAM is best suited for storing what they call scratch data. Scratch data is defined as object oriented data that is critical to the execution of a series of Java operations inside the JVM, but may not be critical once a business transaction is complete. The Terracotta Architecture has three components:

    1. Client Nodes - Each client node corresponds to a client node in the cluster which runs on a standard JVM
    2. Server Cluster - java process that provides the clustering intelligence. The current Terracotta implementation operates in an Active/Passive mode
    3. Storage used as
      • Virtual Heap storage - as objects are paged out of the client nodes, into the server, if the server heap fills up, objects are paged onto disk
      • Lock Arbiter - To ensure that there is no possibility of the classic "split-brain" problem, Terracotta relies on the disk infrastructure to provide a lock.
      • Shared Storage - to transmit the object state from the active to passive, objects are persisted to disk, which then shares the state to the passive server(s).
    JVM-level clustering can turn single-node, multi-threaded apps into distributed, multi-node apps, often with no code changes. This is possible by plugging in to the Java Memory Model in order to maintain key Java semantics of pass-by-reference, thread coordination and garbage collection across the cluster. Terracotta enables this using only declarative configuration with minimal impact to existing code and provides fine-grained field-level replication which means your objects no longer need to implement Java serialization. Ari Zilka, the founder and CTO of Terracotta had a video session organized by Skills Matter. He will show you how it works and how you can start clustering your POJO-based Web applications (based on Spring, Struts, Wicket, RIFE, EHCache, Quartz, Lucene, DWR, Tomcat, JBoss, Jetty or Geronimo etc.).

    Click to read more ...

    Tuesday
    Aug122008

    Strategy: Limit The New, Not The Old

    One of the most popular and effective scalability strategies is to impose limits (GAE Quotas, Fotolog, Facebook) as a means of protecting a website against service destroying traffic spikes. Twitter will reportedly limit the number followers to 2,000 in order to thwart follow spam. This may also allow Twitter to make some bank by going freemium and charging for adding more followers. Agree or disagree with Twitter's strategies, the more interesting aspect for me is how do you introduce new policies into an already established ecosystem? One approach is the big bang. Introduce all changes at once and let everyone adjust. If users don't like it they can move on. The hope is, however, most users won't be impacted by the changes and that those who are will understand it's all for the greater good of their beloved service. Casualties are assumed, but the damage will probably be minor. Now in Twitter's case the people with the most followers tend to be opinion leaders who shape much of the blognet echo chamber. Pissing these people off may not be your best bet. What to do? Shegeeks.net makes a great proposal: Limit The New, Not The Old. The idea is to only impose the limits on new accounts, not the old. Old people are happy and new people understand what they are getting into. The reason I like this suggestion so much is that it has deep historical roots, all the way back to the fall of the Roman republic and the rise of the empire due to the agrarian reforms laws passed in 133BC. In ancient Rome property and power, as they tend to do, became concentrated in the hands of a few wealthy land owners. Let's call them the nobility. The greatness that was Rome was founded on a agrarian society. People made modest livings on small farms. As power concentrated small farmers were kicked of the land and forced to move to the city. Slaves worked the land while citizens remained unemployed. And cities were no place to make a life. Civil strife broke out. Pliny said that "it was the large estates which destroyed Italy." To redress the imbalance and reestablish traditional virtuous Roman character, "In 133 BC, Tiberius Sempronius Gracchus, the plebeian tribune, passed a series of laws attempting to reform the agrarian land laws; the laws limited the amount of public land one person could control, reclaimed public lands held in excess of this, and attempted to redistribute the land, for a small rent, to farmers now living in the cities." At this time Rome was a republic. It had a mixed constitution with two consuls at the top, a senate, and tribunes below. Tribunes represented the people. The agrarian laws passed by Gracchus set off a war between between the nobility and the people. The nobles obviously didn't want to lose their the land and set in motion a struggle eventually leading to the defeat of the people, the fall of the Republic, and the rise of the Empire. Machiavelli, despite his unpopular press, was a big fan of the republican form of government, and pinpointed the retroactive and punitive nature of the agrarian laws as why the Republic fell. He didn't say reform wasn't needed, but he thought the mistake was in how in how the reform was carried out. By making the laws retroactive it challenged the existing order. And by making the laws so punitive it made the nobility willing to fight to keep what they already had. This divided the people and caused a class war. In fact, this is the origin in the ex post facto clause in the US Constitution, which says you can't pass a law that with retroactive effect. Machiavelli suggested the reforms should have been carried out so they only impacted the future. For example, in new conquered lands small farmers would be given more land. In this way the nobility wouldn't be directly challenged, reform could happen slowly over time, and the republic would have been preserved. Cool parallel, isn't it? Hey, who says there's nothing to learn from history! Let's just hope history doesn't rerepeat itself again.

    Click to read more ...

    Monday
    Aug112008

    Distributed Computing & Google Infrastructure

    A couple of videos about distributed computing with direct reference on Google infrastructure. You will get acquainted with: --MapReduce the software framework implemented by Google to support parallel computations over large (greater than 100 terabyte) data sets on commodity hardware --GFS and the way it stores it's data into 64mb chunks --Bigtable which is the simple implementation of a non-relational database at Google Cluster Computing and MapReduce Lectures 1-5.

    Click to read more ...

    Friday
    Aug082008

    Separation into read/write only databases

    At least in the articles on Plenty of Fish and Slashdot it was mentioned that one can achieve higher performance by creating read-only and write-only databases where possible. I have read the comments and tried unsuccessfully to find more information on the net about this. I still do not understand the concept. Can someone explain it in more detail, as well as recommend resources for further investigation? (Are there books written specifically about this technique?) I think it is a very important issue, because databases are oftentimes the bottleneck.

    Click to read more ...

    Monday
    Aug042008

    A Bunch of Great Strategies for Using Memcached and MySQL Better Together

    The primero recommendation for speeding up a website is almost always to add cache and more cache. And after that add a little more cache just in case. Memcached is almost always given as the recommended cache to use. What we don't often hear is how to effectively use a cache in our own products. MySQL hosted two excellent webinars (referenced below) on the subject of how to deploy and use memcached. The star of the show, other than MySQL of course, is Farhan Mashraqi of Fotolog. You may recall we did an earlier article on Fotolog in Secrets to Fotolog's Scaling Success, which was one of my personal favorites. Fotolog, as they themselves point out, is probably the largest site nobody has ever heard of, pulling in more page views than even Flickr. Fotolog has 51 instances of memcached on 21 servers with 175G in use and 254G available. As a large successful photo-blogging site they have very demanding performance and scaling requirements. To meet those requirements they've developed a sophisticated approach to using memcached that others can learn from and emulate. We'll cover some of the highlightable strategies from the webinar down below the fold.

    What is Memcached?

    The first part of the first webinar gives a good overview of memcached. Just in case the rock you've been hiding under recently disintegrated, you may not have heard about memcached (as if). Memached is: A high-performance, distributed memory object caching system, generic in nature, but intended for use in speeding up dynamic web applications by alleviating database load. Memcached essentially creates an in-memory shard on top of a pool of servers from which an application can easily get and set up to 1MB of unstructured data. Memcached is two hash tables, one from the client to the server and another one inside the server. The magic is that none of the memcached servers need know about each other. To scale up you just add more servers and the key hashing algorithm makes it all work out right. Memcached is not redundant, has no failover, and has no authentication. It's simple server for storing and getting data, the complex bits must be implemented by applications. The rest of the first webinar is Farhan explaining in wonderful detail how they use memcached at Fotolog. The beginning of the second seminar covers much of the same ground as the first. In the last half of the second seminar Farhan gives a number of excellent code examples showing how memcached is installed, used, and managed. If you've never used memcached before there's a lot of good stuff presented.

    Memcached and MySQL Go Better Together

    There's a little embrace and extend in the webinar as MySQL cluster is presented several times as doing much the same job as memcached, but more reliably. However, the recommended approach for using memcached and MySQL is:
  • Write scale the database by sharding. Partition data across multiple servers so more data can be written in parallel. This avoids a single server becoming the bottleneck.
  • Front MySQL with a memcached farm to scale reads. Applications access memcached first for data and if the data is not in memcached then the application tries the database. This removes a great deal of the load on a database so it can continue to perform it's transactional duties for writes. In this architecture the database is still the system of record for the true value of data.
  • Use MySQL replication for reliability and read query scaling. There's an effective limit to the number of slaves that can be supported so just adding slaves won't work as scaling strategy for larger sites. Using this approach you get scalable reads and writes along with high availability. Given that MySQL has a cache, why is memcached needed at all?
  • The MySQL cache is associated with just one instance. This limits the cache to the maximum address of one server. If your system is larger than the memory for one server then using the MySQL cache won't work. And if the same object is read from another instance its not cached.
  • The query cache invalidates on writes. You build up all that cache and it goes away when someone writes to it. Your cache may not be much of a cache at all depending on usage patterns.
  • The query cache is row based. Memcached can cache any type of data you want and it isn't limited to caching database rows. Memcached can cache complex complex objects that are directly usable without a join.

    Cache everything that is slow to query, fetch, or calculate.

    This is Fotolog's rule of deciding what to cache. What is considered slow depends on your requirements. But when something becomes slow it's a candidate for caching.

    Fotolog's Caching Typology

    Fotolog has come up with an interesting typology of their different caching strategies:
  • Non-Deterministic Cache - the classic memcached model of reading through the cache and writing to the database.
  • State Cache - maintain current application state in cache.
  • Proactive Cache - push changes from the database directly to the cache.
  • File System Cache - save NFS load by serving files from the cache instead of the file system.
  • Partial Page Cache - cache displayable page elements, not just data.
  • Application Based Replication - use a client side API to hide all the low level details of interacting with the cache.

    Non-Deterministic Cache

    This is the typical way of using memcached. I think the non-determinism comes in because an application can't depend on data being in the cache. The data may have been evicted because a slab is full or because the data simply hasn't been added yet. Other Fotolog strategies are deterministic, which means the application can assume the data is always present.

    Useful For

  • Ideal for complex objects that are read several times. Especially for sharded environments where you need to collect data from multiple shards.
  • Good replacement for MySQL query cache
  • Caching relationships and other lists
  • Slow data that’s used across many pages
  • Don’t cache if its more taxing to cache than you’ll save
  • Tag clouds and auto-suggest lists For example, when a photo is uploaded the photo is uploaded on the page of every friend. These lists are taxing to calculate so they are cached.

    Usage Steps

  • Check memcached for your data key.
  • If the data doesn't exist in the cache then check database.
  • If the data exists in the database then populate memcached.

    Stats

  • 45 memcached instances dedicated to nondeterministic cache
  • Each instance (on average): * ~440 gets per second * ~40 sets per second * ~11 gets/set Fotolog likes to characterize their caching policy in terms of the ratio of gets to sets.

    Potential Problems

  • While memcached is usually a light CPU user, Fotolog ran their cache on their application servers and found some problems: * 90% CPU usage * Memory garbage collected nearly once a minute * Experienced blocking on memcached on app servers
  • Operations are not transactional. One work around is to set expirations so stale data doesn't stay around long.

    State Cache

    Keeps the current state of an application in cache.

    Useful For

  • Expensive operations.
  • Sessions. If a memcached server goes down just make people login again.
  • Keep track of who's online and their current status, especially for IM applications. Use memcached or the load would cripple the database.

    Usage Steps

    It's a form of non-deterministic caching so the same steps apply.

    Stats

  • 9G dedicated. Depending on the number users all the users can keep in cache.

    Deterministic Cache

    Keep all data for particular database tables in the cache. An application always assumes that the data they need is in the cache (deterministic), applications never go to the database for data. Applications don't have to check memcached before accessing the data. The data will exist in the cache because the database is essentially loaded into the cache and is always kept in sync.

    Useful For

  • Read scalability. All reads go through the cache and the database is completely offloaded.
  • Ideal for caching things that have no expiration.
  • Heavily accessed data/objects/lists
  • User credentials
  • User profiles
  • User preferences
  • Active media belonging to users, like photo lists.
  • Outsourcing logins to memcached. Don't hit database on login. All logins are processed through the cache.

    Usage Steps

  • Multiple dedicated cache pools are maintained. Instead of one large pool make separate standalone pools. Multiple pools are necessary for high availability. If a cache pool goes down then applications switch over to the next pool. If a multiple pools did not exist and a pool did go down then the database would be swamped with the load.
  • All cache pools are maintained by the application. A write to the database means writing to multiple memcache pools. When an update to a user profile happens, for example, the update has to replicated to multiple caches from that point onwards.
  • When the site starts after a shutdown then when it comes up the deterministic cache is populated before the site is up. The site is rarely rebooted so this is rare occurrence.
  • Reads could also be load balanced against the cache pools for better performance and higher scalability.

    Stats

  • ~ 90,000 gets / second across cache cluster
  • ~ 300 sets / second
  • get/set ratio of ~ 300

    Potential Problems

  • Must have enough memory to hold everything.
  • The database has rows and the cache may have objects. The database caching logic must know enough to create objects from the database schema.
  • Maintaining the multiple caches seems complex. Fotolog uses Java and Hibernate. They wrote their own client to handle rotation through pools.
  • Maintaining multiple caches adds a lot of overhead to the application. In practice there's little replication overhead compared to benefit.

    Proactive Caching

    Data magically shows up in the cache. As updates happen to the database the cache is populated based on the database change. Since the cache is updated as the database is updated the chances of data being in cache are high. It's non-deterministic caching with a twist.

    Useful For

  • Pre-Populating Cache: Keeping memcached updated minimizes calls to database if object not present.
  • “Warm up” cache in cases of cross data-center replication.

    Usage Steps

    There are typically three implementation approaches:
  • Parse binary log for updates. When an update is found perform the same operation on the cache.
  • Implement user defined functions. Setup triggers that call UDF to update the cache. See http://tangent.org/586/Memcached_Functions_for_MySQL.html for more details.
  • Use the Blackhole gambit. Facebook is rumored to use the Blackhole storage engine to populate cache. Data written to a Blackhole table is replicated to cache. Facebook uses it more to invalidate data and for cross country replication. The advantage of this approach is the data is not replicated through MySQL which means there are no binary logs for the data and it's not CPU intensive.

    File System Caching

    NFS has significant overhead when used with a large number of servers. Fotolog originally stored XML files on a SAN and exposed them using NFS. They saw contention on these files so they put files in memcached. Big performance improvements were seen and it kept NFS mounts open for other requests. Smaller media can also be stored in the cache.

    Partial Page Caching

    Cache directly displayable page elements. The other caching strategies cache data used to create pages, but some things are still compute intensive and require a lot of work. So instead of just caching objects, prepare and cache entire page elements for reuse. For page elements that are accessed many times per second this can be a big win. For example: calculating top users in a region, popular photo list, and featured photo list. Especially when using sharding it can take some time to calculate these lists, so caching the resulting page elements makes a lot of sense.

    Application Based Replication

    Write data to the cache through your own API. The API hides implementation details like:
  • An application writes to one memcached client which writes to multiple memcached instances.
  • Where the cache pools are and how many their are.
  • Writing to multiple pools at the same time.
  • Rotating to another pool on a pool failure until another pool is brought up and updated with data. This approach is very fast if not network bound and very cost effective.

    Miscellaneous

    There were a few suggestions on using memcached that didn't fit in any other section, so they're gathered here for posterity:
  • Have a lot of nodes to handle loss. Losing a node with a few nodes will cause a spike on the database as everything reloads. Having more servers means less database load on failure.
  • Use a warm standby that takes over IP of a memcached server that fails. This means you clients will not have to update their cache lists.
  • Memcached can operate with UDP and TCP. Persistence connections are better because there's less overhead. Cache designed to use 1000s of connections.
  • Use separate memcached servers to reduce contention with applications.
  • Check that your slab sizes match the size of the data you are allocating or you could be wasting a lot of memory. Here are some additional strategies from Memcached and MySQL tutorial:
  • Don't think row-level (database) caching, think complex objects.
  • Don't run memcached on your database server, give your database all the memory it can get.
  • Don't obsess about TCP latency - localhost TCP/IP is optimized down to an in-memory copy.
  • Think multi-get - run things in parallel whenever you can.
  • Not all memcached client libraries are made equal, do some research on yours.
  • Instead of invalidating your data, expire it whenever you can - memcached will do all the work
  • Generate smart keys - ex. on update, increment a version number, which will become part of the key
  • For bonus points, store the version number in memcached - call it generation
  • The latter will be added to Memcached soon - as soon as Brian gets around to it

    Final Thoughts

    Fotolog has obviously put a great deal of thought and effort into creating sophisticated scaling strategies using memcached and MySQL. What I'm struck with is the enormous amount of effort that goes into syncing rows and objects back and forth between the cache and the database. Shouldn't it be easier? What role is the database playing when the application makes such constant use of the object cache? Wouldn't more memory make the disk based storage unnecessary?

    Related Articles

  • Designing and Implementing Scalable Applications with Memcached and MySQL by Farhan Mashraqi from Fotolog, Monty Taylor from Sun, and Jimmy Guerrero from Sun
  • Memcached for Mysql Advanced Use Cases by Farhan Mashraqi of Fotolog
  • Memcached and MySQL tutorial by Brian Aker, Alan Kasindorf - Overview with examples of how a few companies use memcached. Good presentation notes by Colin Charles.
  • Strategy: Break Up the Memcache Dog Pile
  • Secrets to Fotolog's Scaling Success
  • Memcached for MySQL

    Click to read more ...

  • Tuesday
    Jul292008

    Ehcache - A Java Distributed Cache 

    Ehcache is a pure Java cache with the following features: fast, simple, small foot print, minimal dependencies, provides memory and disk stores for scalability into gigabytes, scalable to hundreds of caches is a pluggable cache for Hibernate, tuned for high concurrent load on large multi-cpu servers, provides LRU, LFU and FIFO cache eviction policies, and is production tested. Ehcache is used by LinkedIn to cache member profiles. The user guide says it's possible to get at 2.5 times system speedup for persistent Object Relational Caching, a 1000 times system speedup for Web Page Caching, and a 1.6 times system speedup Web Page Fragment Caching. From the website: Introduction Ehcache is a cache library. Before getting into ehcache, it is worth stepping back and thinking about caching generally. About Caches Wiktionary defines a cache as A store of things that will be required in future, and can be retrieved rapidly . That is the nub of it. In computer science terms, a cache is a collection of temporary data which either duplicates data located elsewhere or is the result of a computation. Once in the cache, the data can be repeatedly accessed inexpensively. Why caching works Locality of Reference While ehcache concerns itself with Java objects, caching is used throughout computing, from CPU caches to the DNS system. Why? Because many computer systems exhibit locality of reference . Data that is near other data or has just been used is more likely to be used again. The Long Tail Chris Anderson, of Wired Magazine, coined the term The Long Tail to refer to Ecommerce systems. The idea that a small number of items may make up the bulk of sales, a small number of blogs might get the most hits and so on. While there is a small list of popular items, there is a long tail of less popular ones. The Long Tail The Long Tail is itself a vernacular term for a Power Law probability distribution. They don't just appear in ecommerce, but throughout nature. One form of a Power Law distribution is the Pareto distribution, commonly know as the 80:20 rule. This phenomenon is useful for caching. If 20% of objects are used 80% of the time and a way can be found to reduce the cost of obtaining that 20%, then the system performance will improve. Will an Application Benefit from Caching? The short answer is that it often does, due to the effects noted above. The medium answer is that it often depends on whether it is CPU bound or I/O bound. If an application is I/O bound then then the time taken to complete a computation depends principally on the rate at which data can be obtained. If it is CPU bound, then the time taken principally depends on the speed of the CPU and main memory. While the focus for caching is on improving performance, it it also worth realizing that it reduces load. The time it takes something to complete is usually related to the expense of it. So, caching often reduces load on scarce resources. Speeding up CPU bound Applications CPU bound applications are often sped up by: * improving algorithm performance * parallelizing the computations across multiple CPUs (SMP) or multiple machines (Clusters). * upgrading the CPU speed. The role of caching, if there is one, is to temporarily store computations that may be reused again. An example from ehcache would be large web pages that have a high rendering cost. Another caching of authentication status, where authentication requires cryptographic transforms. Speeding up I/O bound Applications Many applications are I/O bound, either by disk or network operations. In the case of databases they can be limited by both. There is no Moore's law for hard disks. A 10,000 RPM disk was fast 10 years ago and is still fast. Hard disks are speeding up by using their own caching of blocks into memory. Network operations can be bound by a number of factors: * time to set up and tear down connections * latency, or the minimum round trip time * throughput limits * marshalling and unmarhshalling overhead The caching of data can often help a lot with I/O bound applications. Some examples of ehcache uses are: * Data Access Object caching for Hibernate * Web page caching, for pages generated from databases. Increased Application Scalability The flip side of increased performance is increased scalability. Say you have a database which can do 100 expensive queries per second. After that it backs up and if connections are added to it it slowly dies. In this case, caching may be able to reduce the workload required. If caching can cause 90 of that 100 to be cache hits and not even get to the database, then the database can scale 10 times higher than otherwise. How much will an application speed up with Caching? The short answer The short answer is that it depends on a multitude of factors being: * how many times a cached piece of data can and is reused by the application * the proportion of the response time that is alleviated by caching In applications that are I/O bound, which is most business applications, most of the response time is getting data from a database. Therefore the speed up mostly depends on how much reuse a piece of data gets. In a system where each piece of data is used just once, it is zero. In a system where data is reused a lot, the speed up is large. The long answer, unfortunately, is complicated and mathematical. It is considered next.

    Related Articles

  • Caching Category on High Scalability
  • Product: Memcached
  • Manage a Cache System with EHCache

    Click to read more ...

  • Saturday
    Jul262008

    Sharding the Hibernate Way

    Update: A very nice JavaWorld podcast interview with Google engineer Max Ross on Hibernate Shards. Max defines Hibernate Shards (horizontal partitioning), how it works (pretty well), virtual shards (don't ask), what they need to do in the future (query, replication, operational tools), and how it relates to Google AppEngine (not much). To scale you are supposed to partition your data. Sounds good, but how do you do it? When you actually sit down to work out all the details it’s not that easy. Hibernate Shards to the rescue! Hibernate shards is: an extension to the core Hibernate product that adds facilities for horizontal partitioning. If you know the core Hibernate API you know the shards API. No learning curve at all. Here is what a few members of the core group had to say about the Hibernate Shards open source project. Although there are some limitations, from the sound of it they are doing useful stuff in the right way and it’s very much worth looking at, especially if you use Hibernate or some other ORM layer.

    Information Sources

  • Google Developer Podcast Episode Six: The Hibernate Shards Open Source Project. This is the document summarized here.
  • Hibernate Shards Project Page
  • Hibernate Shards Dev Discussion Group.
  • Ryan Barrett’s Scaling on the Cheap presentation. Many of the lessons from here are in Hibernate Shards.
  • JavaWorld podcast interview: Sharding with Max Ross - Hibernate Shards - Max Ross is the Google engineer who spends his days working on the Google App Engine data store. On the side he works on Hibernate Shards, another scalability-obsessed project that is open source.

    What is Hibernate Shards?

  • Shard: splitting up data sets. If data doesn't fit on one machine then split it up into pieces, each piece is called a shard.
  • Sharding: the process of splitting up data. For example, putting employees 1-10,000 on shard1 and employees 10,001-20,000 on shard2.
  • Sharding is used when you have too much data to fit in one single relational database. If your database has a JDBC adapter that means Hibernate can talk to it and if Hibernate can talk to it that means Hibernate Shards can talk to it.
  • Most people don't want to shard because it makes everything complex. But when you have too much data, when you fill your database up, you need another solution, which can be to shard the data across multiple relational databases. The complexity arises because your application has to have the smarts to access multiple databases and that's where Hibernate Shards tries to help.
  • Structure of the data is identical from server to server. The same schema is used across all databases (MySQL, etc).
  • Hibernate was chosen because it's a good ORM tool used internally at Google, but to Google Scale (really really big), sharding needed to be added because Hibernate didn’t support that sort of scale out of the box.
  • The learning curve for a Hibernate user is zero because the Hibernate API is the same. The shard implementation hasn’t violated the API (yet). Sharded versions of Session, Critieria, and Factory are available so the programmer doesn't need to change code. Query isn't implemented yet because features like aggregation and grouping are very difficult to implement across databases.
  • How does it compare to MySQL's horizontal partitioning? Shards is for situations where you have too much data to fit in a single database. MySQL partitioning may allow you to delay when you need to shard, but it is still a single database and you’ll eventually run into limits.

    Schema Design for Shards

  • When sharding you have to consider the general issues of distributed data design for high data volumes. These aren’t Hibernate Shards specific issues, but are general to the problem space.
  • Schema design is the most important of the sharding process and you’ll have to do that up front.
  • You need to pick a dimension, a root level entity, that is easily sharded. Users and customers are common examples.
  • Accept the fact that those entities and all the entities that hang off those entities will be stored in separate physical spaces. Querying across different shards will be difficult. As will management and just about anything else you take for granted.
  • Control over how data are distributed is determined by a pluggable strategies layer.
  • Plan for the future by picking a strategy that will last you a long time. Repartitioning/resharding the data is operationally very difficult. No management tools for this yet.
  • Build simpler models that don't contain as many relationships because you don't have cross shard relationships. Your objects graphs should be contained on one shard as much as possible.
  • Lots of lots of objects pointing to each other may not be a good candidate for sharding.
  • Because the shards design doesn’t modify Hibernate core, you can design using shards from the start, even though you only have one database. Then when you need to start scaling it will be easier to grow.
  • Existing systems with shardable tables shouldn’t take very long to get up and running.
  • Policy decisions can drive sharding. For example, let's say customers don't want their data intermingling, so each customer would get their own database. In this case the application would shard on the customer as a matter of policy, not simply scaling concerns.

    The Sharding Code’s Relationship to Hibernate

  • Hibernate Shards encapsulates knowledge of all the shards. This knowledge is not in the database or the application. It's at the Hibernate persistence layer which provides a unified view of all the databases so the application doesn't have to know.
  • Shards doesn't have full support for Hibernate’s query interface. Hibernate has a criteria or a query interface. Criteria interface is robust, but not good for JPA (Java persistence API), which is query based.
  • Sharding should work across all databases Hibernate works on since shards is a layer on top of Hibernate core beneath the standard Hibernate interfaces. Programmers aren’t aware of it.
  • What they are doing is figuring out how to do standard things like save objects, update, and query objects across multiple databases using standard Hibernate interfaces. If Hibernate can talk to it they can talk to it.
  • A sharded session is used to contain Hibernate’s sessions so Hibernate capabilities are preserved.
  • Can not manage cross shard foreign relationships (yet). Do have runtime checks to detect when cross shard relations are used accidentally. No foreign key constraint checking and there’s no Hibernate lazy loading. From a programming perspective you can have IDs that reference other objects on other shards, it’s just that Hibernate won’t know about these relationships.
  • Now that the base software is done these more advanced features can be considered. It may take changes in Hibernate core

    Pluggable Strategies Determine How Data Are Split Across Shards

  • A Strategy dictates how data are spread across the shards. It’s an interface you need to implement. There are three Strategies: * Shard Resolution Strategy - how you will retrieve your objects. * Shard Selection Strategy – define where objects are saved to. * Access Strategy – once you figure out which shard you are talking to, how do you want to access those shards (serially, 2 at a time, in parallel, etc)?
  • Goal is to have Strategies as flexible as possible so you can decide how your data are sharded.
  • A couple of implementations are provided out of the box: * Round Robin - First one goes to the first shard, second to the second shard, and then it loops back. * Attribute Based – Look at attributes in the data to determine which shard. You can shard users by country, for example.
  • Configuration is set by creating a prototype configuration for all shards (remember, same schema). Then you specify what's different from shard to shard like URL, user name and password, dialect (MySQL, Postgres, etc). Then they'll create a sharded session factory for Hibernate so developers use standard interfaces.

    Some Limitations

  • Full Hibernate HQL is not yet supported (maybe it is now, but I couldn’t tell).
  • Distributed queries are handled by applying a standard HQL query to each shard, merging the results, and applying the filters. This all happens in the application server so using very large data sets could be a problem. It’s left to the intelligence of the developers to do the right thing to manage performance.
  • No mirroring or data replication. Replication is having common tables, like zip codes, available on all shards.
  • No clean way to manage read only data you want on every shard for performance and referential integrity reasons. Say you have country data. It makes sense to replicate that data on each shard so all queries using that data can stay on the shard.
  • No handling of fail over situations, which is just like Hibernate. You could handle it in your connection pool or some other layer. It’s not considered part of the shard/OR mapping layer.
  • There’s a need for management tools that work across shards. For example, repartition data on a live system.
  • It’s possible to shard across different databases as long as you keep the same schema in the same in each database.
  • The number of shards you can have is somewhat limited because each shard is backed by a connection pool which is a lot of databases connections. And ORDER_BY operations across databases must be done in memory so a lot of memory could be used on large data sets.

    Related Articles

  • An Unorthodox Approach to Database Design: The Coming of the Shard.

    Click to read more ...