« 6 Strategies for Scaling BBC iPlayer | Main | Applying Scalability Patterns to Infrastructure Architecture »

Working With Large Data Sets

This is an excerpt from my blogpost Working With Large Data Sets...

For the past 18 months I’ve moved from working on the SMTP proxy to working on our other systems, all of which make use of the data we collect from each connection. It’s a fair amount of data and it can be up to 2Kb in size for each connection. Our servers receive approximately 1000 of these pieces of data per second, which is fairly sustained due to our global distribution of customers. If you compare that to Twitter’s peak of 3,283 tweets per second (maximum of 140 characters), you can see it’s not a small amount of data that we are dealing with here.

I recently set out to scientifically prove the benefits of throttling, which is our technology for slowing down connections in order to detect spambots, who are kind enough to disconnect quite quickly when they see a slow connection. Due to the nature of the data we had, I needed to work with a long range of data to show evidence that an IP that appeared on Spamhaus had previously been throttled and disconnected, and then measure the duration until it appeared on Spamhaus. I set a job to pre-process a selected set of customers data and arbitrarily decided 66 days would be a good amount to process, as this was 2 months plus a little breathing room. I knew from my experience it was possible that it might take 2 months for a bad IP to be picked up by Spamhaus.

I extracted 28,204,693 distinct IPs, some of which were seen over million times in this data set.

Click here to

References (2)

References allow you to track sources for this article, as well as articles that were written in response to this article.

Reader Comments

There are no comments for this journal entry. To create a new comment, use the form below.

PostPost a New Comment

Enter your information below to add a new comment.
Author Email (optional):
Author URL (optional):
Some HTML allowed: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <code> <em> <i> <strike> <strong>